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Summary

In the context of global climate change, the increasing frequency of extreme weather events
poses significant challenges to the property insurance industry. This study presents a comprehensive
analytical framework addressing the sustainability of the property insurance sector under extreme
weather conditions. Initially, we employed a Multi-Scale Geographically Weighted Regression
(MGWR) model, integrating climate data, geographical location, and insurance claims data, to
analyze the impact of extreme weather on insurance payouts. The model results indicate that
considering spatial heterogeneity allows for more accurate predictions of insurance claim amounts,
offering insurance companies a scientific risk assessment tool. For instance, we observed a signifi-
cant positive correlation between insurance payouts and the probability of extreme environmental
events in certain high-risk areas.

Addressing the first issue, we proposed a risk-based insurance pricing strategy that balances
the long-term health of insurance companies with the financial burden on property owners. By
incorporating a humanitarian adjustment coefficient and a profitability adjustment factor, our model
prices insurance products at different risk levels, achieving a balance between social responsibility
and economic efficiency. For example, our model predicted insurance amounts for California (a
high-risk area) to be $20.1394 million in 2023, with an anticipated increase to $31.0054 million
by 2034.

For the second issue, we developed community building and development strategies to adapt
to risks posed by climate change. Using data standardization, entropy calculation, and weighting,
we provided property owners with strategies to influence insurance company decisions, thereby
reducing insurance costs. For example, we suggested communities could lower insurance costs
by enhancing per capita GDP, controlling population density, improving healthcare quality, and
supporting educational development.

In addressing the third issue, we focused on the protection of historical landmarks, specifically
the Statue of Liberty. Utilizing the MGWR model, combined with building conservation priorities,
we assessed the protective needs of the Statue of Liberty. Our detailed protection plan provided
the community with measures to mitigate the potential impacts of extreme weather on this cultural
symbol. For example, the proposed protection measures included structural reinforcement, envi-
ronmental monitoring system installation, and emergency response planning, with an estimated
annual investment of about $2.5 million.

In summary, this study provides insurance companies with decision support for underwriting in
extreme weather conditions and offers practical strategies for community and heritage conservation.
Our framework emphasizes the importance of scientific analysis, community involvement, and
multi-objective optimization, presenting a comprehensive approach to addressing the challenges
posed by climate change.

Keywords: climate change, property insurance, risk assessment, community development,
historical heritage protection, multi-scale geographically weighted regression
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1 Introduction

1.1 Problem Background
”Nature is kind of a loving mother, but also a butcher in cold blood.” —Victor Hugo. It suggests

that nature possesses both a generous aspect, bestowing survival and prosperity upon humanity, and a
ruthless, unpredictable side. The latest data indicates that the past seven years are poised to become the
hottest seven years on record (WMO 2023). Due to climate change, more severe and frequent extreme
weather events such as tropical cyclones, heatwaves, floods, and droughts are becoming the new norm.
These extreme weather events have a significant impact on society, not only claiming approximately
35,000 lives annually but also causing substantial economic losses. For instance, in 2016, flash floods
and storms in Germany, Belgium, and Switzerland resulted in $2.2 billion in losses, with around 50%
of the costs covered by insurance companies [2].

The insurance industry has long warned about the escalating frequency and material damage
caused by weather disasters on a global scale. This surge can be attributed to the rise in both the
number and geographical extent of settlements in vulnerable areas, the accumulation of increasingly
valuable and delicate assets in these regions, and the evident shifts in climate and the environment
[4]. Therefore, determining how to ensure the sustainability of property insurance through appropriate
interventions will become one of the key questions and turning points in the future development of
human society.

Figure 1: Insurance strategies are all you need

1.2 Problem Restatement
Q1: Insurance Underwriting Strategies in a Changing Climate: Developing a model to aid

insurance companies in deciding whether to underwrite in areas increasingly affected by extreme
weather events presents a complex challenge. This model must balance the long-term health of the
insurance company with the financial burdens on property owners.

Q2: Community Construction and Development in the Face of Climate Risks: Adapting
to changing insurance environments requires a nuanced approach to assess the risks of building and
developing in specific locations. Ensuring property resilience and sustainable community development
in the face of these risks is pivotal.
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Q3: Preservation of Historical Landmarks under Climate Threats: Selecting a historical
landmark and applying insurance and protection models to assess its value poses a unique challenge. For
communities, this involves proposing a comprehensive protection plan, which includes recommended
measures, timelines, and associated costs to safeguard these cultural treasures against the ravages of
extreme weather.

1.3 Related Work
In addressing insurance industry pricing strategies under extreme weather conditions, current

literature highlights several key strategies and methods. Firstly, insurance companies are enhancing
their internal measures to more accurately assess and price risks. This includes developing enhanced
predictive capabilities and integrating artificial intelligence with spatial imaging for more accurate asset
vulnerability assessments. For instance, Canadian technology company Riskthinking. [1]

Secondly, insurers are intensifying interactions with clients to raise risk awareness and promote
effective mitigation measures. This involves risk consultancy, raising awareness of risks, and providing
post-disaster services to build resilience. A study by JBA Risk Management emphasizes that even a
5% enhancement in household preventative measures can significantly reduce losses. [3]

Thirdly, product innovation in insurance is also a response to the new climate realities [7]. This
includes adapting insurance products to cover a broader range of climate-related risks and developing
policies more aligned with current and future climate conditions.

Fourthly, insurers are collaborating with policymakers, regulatory bodies, and other industry
stakeholders to adapt to the evolving climate realities. This includes advocating for regulatory changes,
sharing data, and investing in climate-adaptive infrastructure projects [5].

Additionally, the variability of climate risks renders traditional models based on historical data
less reliable. This necessitates a shift towards predictive risk assessment methods. For instance, Risk
Management Solutions (RMS) has adjusted its models to account for the changing frequency and
severity of extreme weather events like hurricanes and floods [8].

Finally, insurers are focusing on building financial resilience by considering low-probability
catastrophic events and diversifying their investment portfolios. This involves using risk models that
hypothesize non-fixed risks and reducing reliance on historical data, thereby enabling insurers to better
understand and measure the impact of climate risks on their financial resilience [6].

1.4 Our work
1. In the first study, we developed a Multiscale Geographically Weighted Regression (MGWR) model

by integrating climatic factors, geographical locations, and financial data from insurance companies.
This model is designed to provide a scientific basis for property insurance pricing. Initially, Principal
Component Analysis (PCA) was employed to reduce the dimensions of climate data. Subsequently,
we utilized the MGWR model to analyze the impact of spatial heterogeneity on insurance claims.
Finally, by applying asset pricing models and long-term health development models, we offered
strategies for risk management and capital allocation for insurance companies.

2. We introduced community-based protection strategies to complement the insurance model, focusing
on the role of community administrators and property owners in mitigating risks. The community
protection model incorporates protective measures and calculates the optimal level of intervention
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based on risk and cost considerations. For property owners, we employed the Improved Entropy
Weight Method to determine the Humanitarian Adjustment Coefficient (HIC), guiding them on
strategies to influence insurance decisions and reduce potential losses.

3. Our work also addressed the unique challenge of preserving historical landmarks under climate
threats. By adapting the MGWR model to prioritize building conservation, we assessed the protec-
tion needs of iconic structures like the Statue of Liberty. We considered architectural factors and
geographic coordinates to determine the required level of protection and proposed a comprehensive
protection plan, including recommended measures, timelines, and associated costs to safeguard
these cultural treasures against extreme weather events.

Figure 2: Flow Chart of Our Work

2 Preparation of the Models

2.1 Assumptions
To simplify our model and eliminate the complexity, we make the following main assumptions in

this literature. All assumptions will be re-emphasized once they are used in the construction of our
model:

1. Data Completeness and Quality: The official dataset contains all necessary information required
for the research, eliminating the need for supplementary data. This dataset comprehensively covers
the required variables and is of high quality, ensuring the reliability of the analysis.

2. Spatial Heterogeneity in Extreme Weather Events: There is a significant spatial heterogeneity
in the impact of extreme weather events on insurance payouts across different geographical loca-
tions. This heterogeneity can be effectively captured by the Multi-Scale Geographically Weighted
Regression (MGWR) model, leading to more accurate insurance pricing and risk assessment.
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3. Correlation of Socio-Economic Factors with Insurance Needs: Socio-economic factors, such
as per capita GDP, population density, and education levels, show a significant correlation with
insurance demand and risk assessment. This underpins the validity of using the entropy weighting
method to determine the Humanitarian Adjustment Coefficient (HAC), highlighting the importance
of these factors in developing insurance strategies.

2.2 Notations
In this work, we use the nomenclature in Table 1 in the model construction. Other nonefrequent-

used symbols will be introduced once they are used.

Table 1: List of Symbols and Abbreviations
Symbol/Abbreviation Explanation
MGWR Multi-Scale Geographically Weighted Regression, a spatial analysis technique
PCA Principal Component Analysis, a statistical procedure
HIC Humanitarian Adjustment Coefficient, a factor in insurance pricing
PR Profitability Adjustment Factor, a factor in insurance pricing
AGO Accumulated Generation Operation, a method for data analysis
GM Grey Model, a forecasting method
SEF Socio-economic Factor, indicators of socio-economic status
GDP Gross Domestic Product, a measure of economic activity
ENT Entropy, a measure of disorder or randomness
W Weight, a value assigned to each socio-economic factor
HI Humanitarian Impact, a measure of the social effect of insurance strategies
𝑍 Standardized value
𝜇 Mean of the dataset
𝜎 Standard deviation of the dataset
𝑃𝐶𝐴𝑖𝑘

𝐹𝑎𝑐𝑡𝑜𝑟
Principal components, derived from PCA

P𝑖 Probability of extreme weather events
I𝑖 Insurance payout amount
(𝑢𝑖, 𝑣𝑖) Geographic coordinates
𝜖𝑖 Error term in the regression model
𝛽𝑘 (𝑢𝑖, 𝑣𝑖) Location-specific coefficients in the regression model

3 Insurance Strategy Formulation Model
In our study, we evaluated the assumptions of risk in the design of insurance policies across

specific regions. Our methodology encompassed the aggregation of environmental factors, followed by
employing a Multi-Scale Geographically Weighted Regression (MGWR) model to conduct regression
analysis on the loss amounts. This model accounts for spatial heterogeneity, offering convenient
scalability across multiple regions. Insurance coverage amounts were determined in accordance
with the risk-bearing capacity of each region, as identified by a Risk-Based Generalized Pricing
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Model. Moreover, we implemented a humanitarian low-threshold setting to ensure fundamental safety
protection for residents. This approach not only aligns with actuarial principles but also embeds an
element of social responsibility in the formulation of insurance strategies.

3.1 Data Collection
• Climatic Factors: We collected climatic data for the United States region from ERA5-Land

1, which provides data at an hourly resolution with a spatial resolution of 0.1° × 0.1° latitude
and longitude. This dataset includes but is not limited to 96 variables such as precipitation,
temperature, and soil moisture. We segmented the region based on the latitude and longitude
of the United States and collected climate data spanning from 2013 to 2023, covering the past
decade.

• Geographical Data: We gathered latitude and longitude coordinates of extreme weather events
in the United States region from the Global Disaster Data Platform 2. This dataset includes event
dates, states, as well as latitude and longitude information, along with financial losses.

• Insurance Data: We obtained annual payout and insurance premium amounts from NAIC 3,
which serve as the dependent variables for our regression model.

3.2 Data Preprocessing
• Standardization: To ensure comparability and analytical precision, we transformed all variables

into a uniform, dimensionless scale. This was achieved by applying the standardization formula.

𝑍 =
(𝑋 − 𝜇)
𝜎

, (1)

where 𝑍 represents the standardized value, 𝑋 is the original value, 𝜇 is the mean of the dataset,
and 𝜎 is the standard deviation.

• Principal Component Analysis (PCA): Given the high dimensionality of our climatic dataset,
comprising 96 variables, we employed Principal Component Analysis (PCA) to distill this
complexity into a more manageable form. The goal was to reduce these variables to four
principal components, capturing the most significant variance in the dataset. PCA was executed
using the following linear transformation:

𝑃𝐶𝐴(𝑋) = 𝑈Σ𝑉𝑇 , (2)

where 𝑋 denotes the original data matrix. In this formula, 𝑈 and 𝑉 are orthogonal matrices
representing the eigenvectors, and Σ is a diagonal matrix consisting of eigenvalues. This transfor-
mation effectively captures the essence of the data in fewer dimensions, aiding in more efficient
and insightful analysis. The decision to use PCA was driven by its ability to identify patterns in
data and express the data in such a way as to highlight their similarities and differences.

1https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview

2https://www.gddat.cn/newGlobalWeb/#/home

3https://content.naic.org/
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• Bivariate Spline Interpolation for Environmental Data: Our methodology involves interpo-
lating climatic data, which is in grid format, to match the latitude and longitude coordinates of
insurance events. We employ Bivariate Spline Interpolation, which is mathematically represented
as:

𝑆(𝑥, 𝑦) =
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1
𝑎𝑖 𝑗𝐵𝑖 (𝑥)𝐶 𝑗 (𝑦), (3)

where 𝑆(𝑥, 𝑦) is the interpolated value at a point (𝑥, 𝑦), 𝐵𝑖 (𝑥) and𝐶 𝑗 (𝑦) are basis spline functions
in the x and y directions, and 𝑎𝑖 𝑗 are the coefficients determined from the data. This technique
allows us to accurately estimate environmental factors at any specific location.

• Extreme Weather Event Identification: In light of the incomplete records of extreme weather
events, our approach incorporates a rigorous analysis of interpolated environmental data. Specifi-
cally, we focus on identifying potential extreme weather occurrences based on climatic thresholds.
This involves comparing the interpolated environmental variables, such as precipitation levels,
against established benchmarks indicative of extreme conditions. The mathematical formulation
for this analysis is as follows:

𝐸 =

{
1, if 𝑆(𝑥, 𝑦) > 𝑇𝑒𝑥𝑡𝑟𝑒𝑚𝑒
0, otherwise

, (4)

where 𝐸 signifies the classification of an event as extreme weather, 𝑆(𝑥, 𝑦) represents the inter-
polated environmental value at a specific location, and 𝑇extreme is the threshold value that defines
an extreme weather condition, such as a specific level of precipitation for torrential rain. This
methodology ensures that even in cases where extreme weather is not officially recorded, our anal-
ysis can still identify and account for such events based on environmental data, thereby providing
a more comprehensive understanding of the impact of extreme weather on insurance-related
occurrences.

3.3 Multi-Scale Geographically Weighted Regression (MGWR)
Multi-scale Geographically Weighted Regression (MGWR) is an advanced spatial analysis tech-

nique that extends the traditional Geographically Weighted Regression (GWR) framework. Unlike
GWR, which assumes a single bandwidth for all covariates, MGWR allows for different spatial scales
(bandwidths) for each covariate, offering a more nuanced understanding of spatial relationships. This
flexibility makes MGWR particularly suited for complex spatial datasets where relationships vary
across space and at different scales. The MGWR model can be expressed as follows:

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) +
𝐾∑︁
𝑘=1

𝛽𝑘 (𝑢𝑖, 𝑣𝑖)𝑋𝑖𝑘 + 𝜖𝑖, (5)

Here, 𝑦𝑖 represents the dependent variable for the 𝑖-th location, (𝑢𝑖, 𝑣𝑖) are the geographic coordinates,
𝑋𝑖𝑘 are the independent variables, 𝛽𝑘 (𝑢𝑖, 𝑣𝑖) are the location-specific coefficients for the 𝑘-th covariate,
and 𝜖𝑖 is the error term.
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In our study, we apply the MGWR model to investigate the relationship between insurance payout
amounts and various environmental factors, post-PCA transformation. Our model is formulated as
follows:

I𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) +
4∑︁
𝑘=1

𝛽𝑘 (𝑢𝑖, 𝑣𝑖)𝑃𝐶𝐴𝑖𝑘𝐹𝑎𝑐𝑡𝑜𝑟 + 𝛽5(𝑢𝑖, 𝑣𝑖)P𝑖 + 𝜖𝑖 . (6)

In this model 6, I𝑖 is the dependent variable representing the insurance payout amount at location 𝑖.
𝑃𝐶𝐴𝑖𝑘

𝐹𝑎𝑐𝑡𝑜𝑟
are the four principal components of the environment derived from the PCA, serving as

independent variables. P𝑖 is an additional independent variable representing the probability of extreme
environmental events at location 𝑖. 𝛽0 (𝑢𝑖, 𝑣𝑖) and 𝛽𝑘 (𝑢𝑖, 𝑣𝑖) are the geographically varying coefficients
for the intercept and each covariate, respectively.

3.4 Risk-Based Insurance Pricing
We extend the traditional insurance pricing model by integrating both humanitarian considerations

and profitability objectives. This novel approach addresses the dual need for ethical responsibility and
economic viability in insurance pricing. We propose a comprehensive multi-objective optimization
model, as detailed below:

The model is formulated to balance the trade-offs between humanitarian impacts and profitability.
The primary components of the model include a humanitarian adjustment coefficient, profitability
adjustment factor, and a final premium calculation that incorporates multi-objective optimization. The
mathematical representation is as follows:

1. Humanitarian Adjustment Coefficient (𝐻𝑖): This coefficient adjusts the insurance premium
based on socio-economic factors relevant to each geographical location. It is calculated as:

𝐻𝑖 = 𝑔(𝑆𝐸𝐹𝑖), (7)

where 𝑔 is a function that reflects adjustments based on local socio-economic factors 𝑆𝐸𝐹𝑖.

2. Profitability Adjustment Factor (𝑃): To ensure the financial sustainability of the insurance
product, a profitability factor is incorporated, calculated based on historical data and targeted
profit margins:

𝑃 = 𝐻𝑃𝑅 + 𝑇𝑃𝑀. (8)

where 𝐻𝑃𝑅 represents the Historical Payout Ratio and 𝑇𝑃𝑀 is the Target Profit Margin.

3. Final Premium Calculation: The final premium for a policyholder, denoted as 𝐹𝑃𝑖, is deter-
mined by the MGWR model’s risk score (𝑅𝑆𝑖) , 𝐻𝑖, and 𝑃 :

𝐹𝑃𝑖 = 𝐵𝑃 × (1 + 𝜃 × 𝑅𝑆𝑖) × 𝐻𝑖 × 𝑃, (9)

where 𝐵𝑃 represents the Base Premium and 𝜃 is the scaling factor for the risk score impact.
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3.5 Multi-Objective Optimization
To optimally balance the humanitarian and profitability objectives, a multi-objective optimization

strategy is employed. This could involve techniques like linear programming or genetic algorithms to
find an equilibrium point that satisfies both objectives without compromising either:

Optimize (𝐻𝑖, 𝑃) to balance (𝐻𝐼, 𝑃𝑅), (10)

where HI stands for Humanitarian Impact and PR for Profitability.

3.6 Future Data Prediction
Accumulated Generation Operation (AGO) Initially, the pre-processed data set, denoted as 𝑋∗,

undergoes an Accumulated Generation Operation to stabilize fluctuations and reveal intrinsic trends,
defined as 𝑌 (1) (𝑖) = ∑𝑖

𝑘=1 𝑋
∗(𝑘) for 𝑖 = 1, 2, . . . , 𝑛.

Grey Model Construction (GM Construction) An improved GM (1, 1) model is constructed,
with its differential equation formulated as 𝑑𝑌 (1)

𝑑𝑡
+ 𝑎𝑌 (1) = 𝑏. This model assumes a linear relationship

between the sequences of 𝑌 (1) , where model parameters 𝑎 and 𝑏 are estimated using the least squares
method: [

𝑎

𝑏

]
=

(
𝐵𝑇𝐵

)−1
𝐵𝑇𝑌𝑁 , (11)

with 𝐵 as the data matrix based on 𝑌 (1) and 𝑌𝑁 as the data vector.
Model Solution and Forecasting The solution of the model is given by

𝑌 (1) (𝑘 + 1) =
(
𝑋 (0) − 𝑏

𝑎

)
𝑒−𝑎(𝑘) + 𝑏

𝑎
, (12)

utilized for forecasting future data points 𝑘 (e.g., 2024-2034). Subsequently, an inverse accumulated
generation operation is conducted to obtain the actual forecast values: �̂� (𝑘) = 𝑌 (1) (𝑘) − 𝑌 (1) (𝑘 − 1).

Validation and Adjustment The model is validated using historical data, comparing predicted
values with actual observations to assess the model’s efficacy and accuracy. Parameters are adjusted
as needed based on forecast accuracy.

3.7 Solution of Insurance Strategy
3.7.1 Historical insurance data and climate data.

We conducted a statistical analysis of extreme weather occurrences in the United States over the
past 20 years. We visualized the probabilities of drought and flood disasters, as illustrated in Figure 3.
The results indicate a higher likelihood of drought disasters in the western regions of the United States,
while the probability of flood disasters is higher in the southeastern regions of the country.

3.7.2 Insurance Strategies for Coping with the Rise in Extreme Weather Events.

In the methodology described above, we initially employed Principal Component Analysis (PCA)
on a comprehensive dataset of 96 environmental factors. This PCA process yielded four principal com-
ponents, each encapsulating distinct and crucial aspects of the meteorological and surface variables.
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Drought                            Flood 

Probability

Figure 3: Probability statistics of extreme weather occurrences in American history.

The first principal component predominantly captured vital data related to evaporation, precipitation,
potential evaporation, and surface heat flux, offering insights into the core dynamics of hydrological
circulation and energy exchange processes. The second principal component primarily encompassed
variables associated with radiation, surface temperature, surface mixed layer depth, surface heat flux,
and longwave radiation downward, highlighting the pivotal role of surface energy balance and the
complex mechanisms of radiation transfer. The third principal component was primarily informative
about precipitation, soil moisture, and surface water layer moisture, elucidating the impact of precip-
itation and soil moisture on water resources and ecosystems. Lastly, the fourth principal component
was chiefly concerned with variables linked to surface temperature, soil temperature, shortwave radia-
tion downward, and longwave radiation downward, uncovering the seasonal and regional variations in
surface temperature and energy transfer, with explained variances of 42.1%, 16.6%, 13.7%, and 10.6%
respectively.

Subsequently, we utilized latitude and longitude data, the four environmental PCA factors, and
population data as independent variables to model the losses due to extreme weather events. Leveraging
the Improved Grey Prediction Model, we further forecasted the environmental factors for the next decade
and predicted the resultant losses from extreme weather events for the same period. The predictive
outcomes are illustrated in Figure 4.

Following this, based on our proposed humanitarian risk-based insurance model, we evaluated
the feasibility of undertaking insurance coverage. The results of our model are presented in the
accompanying Table 2, demonstrating the practical application and effectiveness of our approach in
assessing insurance strategies in the context of extreme weather events.

We segmented the United States into three distinct insurance strategy categories based on demo-
graphic, economic, and environmental risk factors. These categories were High Risk, Medium Risk,
and Low Risk, each tailored to the specific needs and characteristics of various states.

1. High Risk Strategy This strategy is designed for states with dense populations, robust economies,
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Figure 4: Future extreme weather and predictions for the insurance industry.

Table 2: Insurance Amount Forecast by State with Fluctuations for 2023-2034
Year California (High Risk) Texas (Medium Risk) Nebraska (Low Risk)

2023 2013.94 1452.65 545.72
2024 2052.5 1519.88 493.66
2025 2177.5 1614.99 479.27
2026 2272.32 1654.49 489.67
2027 2423.65 1672.04 574.75
2028 2517.67 1758.93 560.37
2029 2639.22 1830.94 590.71
2030 2658.69 1800.65 592.97
2031 2792.19 1930.58 583.62
2032 2852.98 1969.81 637.31
2033 2971.86 1984.03 587.85
2034 3100.54 2015.55 615.2

and a high frequency of extreme weather events. Such states require the highest level of insurance
coverage to mitigate the substantial risks they face. For instance, California, characterized by
its large population and strong economy, frequently experiences wildfires, making it a prime
candidate for the High Risk strategy.

2. Medium Risk Strategy States falling under this category have moderate population sizes and
economic scales, or they experience a moderate frequency of extreme weather events. Texas,
for example, with its significant population and economic strength, faces moderate risks, such as
occasional hurricanes. Similarly, Nebraska, with a moderate population and economic size, also
experiences moderate weather risks, making both states suitable for the Medium Risk strategy.

3. Low Risk Strategy The Low Risk strategy is applicable to states with smaller populations, lower
economic scales, and fewer occurrences of extreme weather events. Vermont, for example, with
its smaller population and economic size, coupled with low risk of extreme weather events, is an
ideal candidate for this strategy.
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3.7.3 Compare with North America and Asia.

We conducted a comparative analysis of insurance strategies between Asia and North America.
By adapting the MGWR (Multiscale Geographically Weighted Regression) model with modified
latitude and longitude information along with corresponding population data, we derived the respective
insurance strategies for countries in Asia. The specific strategies are outlined in Table 3.

In this study, we aimed to evaluate the suitability of insurance strategies in response to varying
demographic, economic, and environmental factors in both regions. The MGWR model allowed us to
capture the spatial heterogeneity and adapt insurance coverage accordingly.

Table 3: Insurance Amount Forecast by Asian Country with Fluctuations for 2024-2034
Year China (High Risk) India (High Risk) Japan (Medium Risk) Korea (Medium Risk) Singapore (Low Risk) Malaysia (Low Risk)

2024 2455.24 2183.38 1764.22 1610.89 798.61 689.12
2025 2558.72 2274.52 1879.01 1652.71 836.85 677.33
2026 2690.72 2350.17 1852.12 1730.93 827.45 735.68
2027 2760.77 2493.63 1991.12 1731.53 813.18 767.32
2028 2940.12 2558.76 2007.34 1789.82 905.42 763.61
2029 2953.82 2709.76 2026.53 1876.93 868.15 768.91
2030 3103.62 2756.99 2133.78 1901.28 952.02 778.82
2031 3183.22 2881.55 2176.88 1968.48 981.36 852.83
2032 3335.21 2994.83 2184.35 2013.84 975.81 811.28
2033 3365.97 3140.54 2280.15 2066.67 947.01 865.19
2034 3483.72 3159.28 2270.69 2139.01 983.69 872.91

Based on the model predictions for Asia and North America, it is evident that Asia exhibits a
greater degree of variability in its insurance strategies compared to North America, with geographical
factors playing a significant role in the divergence between the two regions. The vast expanse of Asia,
with its diverse geography and climate, subjects its countries to a wide array of natural disaster risks,
including earthquakes, typhoons, and floods. Consequently, insurance strategies in Asian nations must
be more diversified to accommodate these varied risks. In contrast, the United States, situated in
a relatively stable geographical zone, may have more targeted insurance strategies for specific types
of risks, such as natural disasters. Environmental factors also influence insurance strategies in both
regions. Asian countries face distinct environmental challenges, including climate change, pollution,
and resource scarcity, which could lead to an increased demand for specific environmental insurance
products.

4 Community Building Protection Strategies
As previously mentioned, we have categorized different cities into three risk zones. However, in

the event of significant natural disasters or exceptionally low risk in certain areas, insurance coverage
may not fully mitigate the losses. Therefore, community administrators and property owners should
also implement specific strategies to enhance the level of protective measures.
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4.1 Community Protection Model
We introduce the protection factor of community administrators into the MGWR model, expanding

its form as follows:

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) +
𝐾∑︁
𝑘=1

𝛽𝑘 (𝑢𝑖, 𝑣𝑖)𝑋𝑖𝑘 + 𝛽𝑃 (𝑢𝑖, 𝑣𝑖)𝑃𝑖 + 𝜖𝑖 . (13)

Here, 𝑦𝑖 represents the dependent variable for location 𝑖, (𝑢𝑖, 𝑣𝑖) are the geographic coordinates, 𝑋𝑖𝑘
are independent variables, 𝛽𝑘 (𝑢𝑖, 𝑣𝑖) are location-specific coefficients for covariate 𝑘 , 𝑃𝑖 is the level of
protective measures for location 𝑖, and 𝜖𝑖 is the error term.

Our goal is to minimize risk 𝐷𝑖 and cost 𝐶𝑖. Risk can be defined as:

𝐷𝑖 = 1 − 𝑅𝑖

𝑅max
, (14)

where 𝑅𝑖 is the community’s capacity to withstand risk at location 𝑖, and 𝑅max is the maximum capacity
to withstand risk.

The cost 𝐶𝑖 is given by:

𝐶𝑖 = 𝐶base + 𝛼 · 𝑃𝑖 · 𝐶protect, (15)
where 𝐶base is the base cost, 𝐶protect is the cost per unit of protective measure, and 𝛼 is an adjustment
coefficient.

Our objective is to minimize the following loss function:

𝐿 =
∑︁
𝑖

(𝐷𝑖 + 𝜆 · 𝐶𝑖). (16)

Here, 𝜆 represents the trade-off coefficient between risk and cost.
This protection model allows community leaders to determine the level of protective measures

based on their specific circumstances and needs. Adjusting 𝑃𝑖 enables communities to make decisions
considering both risk and economic factors.

4.2 Property Owner Strategies
For property owners, we utilize the Improved Entropy Weight Method to determine the Humani-

tarian Adjustment Coefficient (HIC, as shown in Equation 7). Specifically, our modeling process is as
follows:

4.2.1 Data Normalization

Firstly, we normalize the collected socio-economic factor (SEF) data to eliminate scale differences.
These data encompass 12 resident indicators, including population size, per capita GDP, and residents’
educational attainment, among others. The normalized value 𝑆𝐸𝐹′

𝑖 𝑗
is calculated as:

𝑆𝐸𝐹′
𝑖 𝑗 =

𝑆𝐸𝐹𝑖 𝑗 − min(𝑆𝐸𝐹𝑗 )
max(𝑆𝐸𝐹𝑗 ) − min(𝑆𝐸𝐹𝑗 )

, (17)

where 𝑆𝐸𝐹𝑖 𝑗 is the value of the 𝑗-th socio-economic factor for the 𝑖-th location, and min(𝑆𝐸𝐹𝑗 ) and
max(𝑆𝐸𝐹𝑗 ) are the minimum and maximum values of the 𝑗-th factor across all locations.
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4.2.2 Entropy Calculation

Calculate the entropy value 𝐸 𝑗 for each indicator to measure its discriminative power. The entropy
value is given by:

𝐸 𝑗 = − 1
ln(𝑛)

𝑛∑︁
𝑖=1

𝑝𝑖 𝑗 ln(𝑝𝑖 𝑗 ), (18)

where 𝑝𝑖 𝑗 =
𝑆𝐸𝐹′

𝑖 𝑗∑𝑛
𝑘=1 𝑆𝐸𝐹

′
𝑘 𝑗

is the proportion of the 𝑗-th factor at the 𝑖-th location, and 𝑛 is the total number
of locations.

4.2.3 Weight Calculation

Determine the weights 𝑤 𝑗 for each indicator based on their entropy values:

𝑤 𝑗 =
1 − 𝐸 𝑗∑𝑚

𝑘=1(1 − 𝐸𝑘 )
, (19)

where 𝑚 is the total number of indicators.

4.2.4 Weighted Average

Compute the weighted average of the normalized socio-economic indicators to obtain a compre-
hensive index:

𝑆𝐸𝐹′′
𝑖 =

𝑚∑︁
𝑗=1
𝑤 𝑗 · 𝑆𝐸𝐹′

𝑖 𝑗 (20)

4.2.5 Construction of the 𝑔 Function

Assuming the 𝑔 function is linear, it can be expressed as:

𝐻𝑖 = 𝑎 + 𝑏 · 𝑆𝐸𝐹′′
𝑖 , (21)

where 𝑎 and 𝑏 are model parameters to be estimated.

4.2.6 Model Training and Validation

Train the 𝑔 function using historical data by minimizing the difference between actual and predicted
premiums to determine the values of 𝑎 and 𝑏.

4.3 Solution for Property Owners and Community Models
4.3.1 Strategies Implemented by the Community

As mentioned earlier, the strategies adopted by the community essentially constitute a multi-
objective optimization problem involving the level of protective measures, denoted as 𝑃𝑖, risk denoted
as 𝐷𝑖, and cost denoted as 𝐶𝑖. We solved for these three parameter values for extreme events in North
America using scipy and present the results in Figure 5. We observed that in the face of extreme
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weather conditions, these three metrics exhibit a positive correlation. The greater the potential loss
that may arise from risks, the higher the cost should be for the community’s investment in protective
measures. An approximate protective level of 70% is required in relation to the potential losses, with
associated costs amounting to around 30%.

Fictitious Protective Measures, Risk, and Cost Across US States
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Figure 5: Visualization of Community Protection Level, Extreme Weather Risks, and Costs.

4.3.2 Strategies Employed by Property Owners

We utilized the entropy weighting method to model healthcare quality, population size, GDP per
capita, and education levels. The results of our model are presented in Table 4.

Table 4: Entropy Weight Method Results for Socio-economic Indicators
Indicator Raw Data Normalized Value Entropy Value Weight

Healthcare Level 72 0.70 0.3333 0.375
GDP per Capita 30,145 0.30 0.4444 0.250
Population Density 1,019 0.50 0.3889 0.250
Education Level 93 0.90 0.2778 0.125

Therefore, property owners should consider adopting the following strategies to influence the
decisions of insurance companies:

Boost GDP per Capita: Given the higher weight of GDP per capita in the comprehensive
assessment of property losses (0.444), property owners can reduce insurance costs by enhancing the
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region’s economic development. This may involve promoting business and industrial growth, attracting
investments, and increasing employment rates to mitigate potential property losses.

Control Population Density: Population density also holds considerable importance in decision-
making (weight of 0.389). Property owners can take measures to control or strategically plan population
density within the region to lower insurance costs. This could include adjustments to urban planning
and land-use policies to prevent excessive population density.

Enhance Healthcare Quality: Improving healthcare quality is crucial for reducing casualties
during disasters, which is integral to insurance companies’ risk assessments. Property owners can
invest in healthcare facilities and healthcare infrastructure to elevate the region’s healthcare standards,
thus decreasing potential property losses.

Support Educational Development: Despite its relatively lower weight (0.278), education level
remains a significant factor affecting long-term regional development and residents’ quality of life.
Property owners can support educational initiatives and advocate for improved education levels to
enhance overall quality within the region, subsequently reducing risks and insurance costs.

By implementing these strategies, property owners can influence risk factors within the region to
some extent, thereby reducing the potential for higher insurance costs in insurance company decisions,
while concurrently elevating the region’s overall development level.

4.3.3 The Final Impact of Communities and Property Owners
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Figure 6: depict the potential reduction in property loss achievable through the efforts of both commu-
nities and property owners during extreme weather conditions in North America and Asia.

The figure in Figure 6 presents property loss scenarios in North America and Asia under different
intervention measures from 2024 to 2034. These interventions include ”No Intervention,” ”Community
Intervention,” and ”Property Owner Intervention.”

Analysis of Property Loss in North America:
In North America, we can observe the impact of three different intervention levels on property

losses. Under ”No Intervention,” the loss amount increases from 100 units in 2024 to 250 units in 2034.
This suggests that without any measures, extreme weather events may lead to a significant increase in
property losses over time.

When ”Community Intervention” is implemented, the loss amount is 125 units in 2024, increasing
to 275 units by 2034. This indicates that community-level intervention measures such as infrastructure
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development, emergency preparedness, and community education can slow down the growth of property
losses.

”Property Owner Intervention” further reduces losses, decreasing from 150 units in 2024 to
225 units in 2034. This implies that measures taken by property owners, such as improving the
weather resistance of buildings, purchasing appropriate insurance, and implementing risk management
strategies, can more effectively reduce property losses.

Analysis of Property Loss in Asia:
In Asia, property losses under ”No Intervention” increase from 175 units in 2024 to 375 units in

2034. This indicates that the rate of property loss growth is faster in Asia compared to North America
in the absence of intervention.

”Community Intervention” has a more significant effect in Asia, reducing the loss amount from
200 units in 2024 to 325 units in 2034. This may suggest that community intervention measures in
the Asian region, such as collective disaster preparedness and resource sharing, are more effective in
reducing losses.

”Property Owner Intervention” is also effective in Asia, with the loss amount decreasing from
225 units in 2024 to 350 units in 2034. This shows that despite the faster rate of loss growth in
the Asian region, efforts by property owners, such as investing in disaster-resistant facilities and risk
diversification, can still significantly reduce losses.

In conclusion, it can be inferred that interventions by both communities and property owners are
crucial for reducing property losses during extreme weather events.

- In North America, both community intervention and property owner intervention effectively
slow down the growth of losses, with property owner intervention being more effective in reducing
losses.

- In Asia, community intervention shows a more pronounced effect, possibly due to the higher risk
of extreme weather events in the region, necessitating closer community cooperation and collective
action.

- Over time, whether in North America or Asia, regions implementing intervention measures
demonstrate a deceleration in the rate of loss growth, emphasizing the importance of long-term planning
and sustained efforts.

To further reduce losses, the following recommendations are suggested:
For North America: Continue to strengthen community and property owner intervention measures,

especially in improving building weather resistance and risk management strategies.
For Asia: Given the faster rate of loss growth, prioritize community-level interventions while

encouraging property owners to adopt more proactive disaster mitigation measures.

5 Preservation of Historical Landmarks
In this particular problem, we continue to employ a Multi-Scale Spatial Model to characterize the

features of buildings in relation to the damage caused by natural disasters. Simultaneously, we extend
the risk modeling from Problem 1 and the multi-objective optimization modeling from Problem 2.
Specifically, our modeling approach is as follows:
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5.1 Construction of Model
For modeling the preservation of buildings, we use a multi-criteria decision model. Such models

can combine multiple factors to assess the significance of a building in a more comprehensive way.
We collected data on buildings in the U.S. that have experienced extreme weather and have

historical and cultural value in four dimensions: cultural, historical, economic, and community. Pre-
processing of the features using Min-Max normalization yielded cultural, historical, economic, and
community importance scores for each building.

𝐷𝑆 = 𝑤1 · 𝐼𝑐𝑢𝑙𝑡𝑢𝑟𝑒 + 𝑤2 · 𝐼ℎ𝑖𝑠𝑡𝑜𝑟𝑦 + 𝑤3 · 𝐼𝑒𝑐𝑜𝑛𝑜𝑚𝑦 + 𝑤4 · 𝐼𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦 (22)

Where 𝑤1, 𝑤2, 𝑤3, and 𝑤4 denote the trade-off coefficients for cultural, historical, economic, and
community importance, respectively, and 𝐼𝑐𝑢𝑙𝑡𝑢𝑟𝑒, 𝐼ℎ𝑖𝑠𝑡𝑜𝑟𝑦,𝐼𝑒𝑐𝑜𝑛𝑜𝑚𝑦 and 𝐼𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦denote the cultural,
historical, economic, and community importance scores for each building, respectively. We assume
that 𝑤1 = 0.4, 𝑤2 = 0.3, 𝑤3 = 0.2, 𝑤4 = 0.1.

Figure 7: Score for each influencing factor

As can be seen from the figure, Ernest Hemingway House scores highly on cultural importance,
which may reflect its value as a literary heritage site and its significant relevance to Hemingway’s
personal life and work. However, it scores relatively low on community significance, which may
mean that it has less impact on the daily life of the local community. In contrast to the Illinois State
Capitol, which had a higher rating on historical significance, perhaps its historical connection to state
government, it had a lower rating on economic significance, which may indicate that it does not have a
strong role as a tourist attraction or center of economic activity.

5.2 Adapting Building Conservation Prioritization to MGWR Model
To adapt the building conservation prioritization system to a Multiscale Geographically Weighted

Regression (MGWR) model, incorporating architectural factors, follow these steps:
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5.2.1 Define Variables

Identify the dependent variable (required protection level, categorized into three levels to align
with the previous risk levels) and independent variables, including architectural factors such as building
size, age, material cost, and structural complexity. Include the geographic coordinates (latitude and
longitude) of the buildings.

5.2.2 Data Collection

Gather data relevant to the buildings and their surrounding areas, including architectural details,
historical significance, visitor statistics, and potential risks associated with their locations.

5.2.3 Construct MGWR Model

Formulate an MGWR model for each location, utilizing a local regression equation:

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) +
𝐾∑︁
𝑘=1

𝛽𝑘 (𝑢𝑖, 𝑣𝑖)𝑋𝑖𝑘 + 𝜖𝑖 . (23)

Here, 𝑦𝑖 represents the dependent variable for location 𝑖, (𝑢𝑖, 𝑣𝑖) denotes the geographic coordinates of
the buildings, 𝑋𝑖𝑘 stands for the independent variables (architectural factors), 𝛽𝑘 (𝑢𝑖, 𝑣𝑖) are location-
specific coefficients, and 𝜖𝑖 represents the error term. Calibrate the MGWR model using statistical
software to estimate the 𝛽 coefficients for the buildings.

5.3 Preserving Historic Architecture: The Case of the Statue of Liberty

Figure 8: Using the Insurance Industry to Protect the Statue of Liberty

The Statue of Liberty, a symbol of freedom and democracy, is located on Liberty Island in New
York Harbor at the coordinates 40°41’21.30”N, 74°02’40.20”W. This monumental sculpture, a gift
from France to the United States, was dedicated on October 28, 1886, to celebrate the centennial of
American independence. Designed by French sculptor Frédéric Auguste Bartholdi and engineered by
Gustave Eiffel, the statue stands 46 meters tall and, with its pedestal, reaches a total height of 93 meters.
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Weighing 225 tons, the Statue of Liberty is a hollow copper structure supported by a steel framework,
and it has become an enduring symbol of the United States, welcoming immigrants and embodying the
nation’s values of liberty and opportunity.

We conducted spatial regression using the MGWR model for the Statue of Liberty, and the average
regression coefficient distribution is shown in Figure 9. The regression results indicate the following:

Building Size

Building Age

Material Cost

Structural Complexity

Geographic Coordinates

MGWR Regression Results for the Statue of Liberty

Figure 9: The distribution of the regression coefficients for the MGWR model

• Building Size: Due to the enormous size of the Statue of Liberty, extensive maintenance and
protection work is required, necessitating a high level of protection. The coefficient for building
size ranges from 0.7 to 1.0.

• Building Age: The Statue of Liberty has a relatively old age, with many years of history, requiring
a moderate level of protection. The coefficient for building age ranges from 0.5 to 0.7.

• Material Cost: The Statue of Liberty uses relatively expensive building materials, demanding
high-quality maintenance and repair. The coefficient for material cost ranges from 0.5 to 1.0.

• Structural Complexity: The Statue of Liberty’s structure is relatively complex, necessitating
specialized knowledge and skills for maintenance and protection. The coefficient for structural
complexity ranges from 0.5 to 1.0.

• Geographic Coordinates: The Statue of Liberty is located in a geographically high-risk area,
such as a waterfront or multiple hazard zones, requiring a high level of protection. The coefficient
for geographic coordinates ranges from 0.7 to 1.0.

To further refine the insurance pricing model under the consideration of risk, it becomes evident
that the Statue of Liberty necessitates the highest level of protection.
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5.4 A Letter to the Community
In order to better safeguard the Statue of Liberty, we have drafted a recommendation letter for the

community. This letter includes future plans, a timeline, and a cost proposal, which can be found on
the attached letterhead at the end of this document.

6 Senitivity Analysis
In this section, we conduct a robustness check of our model. Given that our model involves

relatively few parameters, with only some hyperparameters manually adjusted in the entropy weighting
method, we perform an ablation study on these parameters. We adopt new weighted coefficients, and
the relationship between insurance losses and community interventions is presented in Figure 10. We
observe that despite changes in the model’s parameters, the trend of losses caused by extreme weather
events continues to fluctuate and rise. Moreover, the beneficial impact of community interventions
consistently exceeds that of individual property owners. This indicates that our model is sufficiently
robust, demonstrating consistent performance under different parameter settings.
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Figure 10: Results of the sensitivity analysis for the entropy weighting method

7 Strengths and Weaknesses

7.1 Strengths
• Spatial Heterogeneity Consideration: The model incorporates spatial heterogeneity through

the MGWR (Multi-Scale Geographically Weighted Regression), enhancing the precision of
predictions and providing insurance companies with a scientific tool for risk assessment.

• Risk and Profitability Balance: The risk-based insurance pricing strategy balances the long-
term health of insurance companies with the financial burden on property owners, achieving a
balance between social responsibility and economic efficiency through a humanitarian adjustment
coefficient and a profitability adjustment factor.
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• Multi-Objective Optimization: The model employs a multi-objective optimization strategy to
balance humanitarian impact (HI) and profitability (PR), aiding insurance companies in making
comprehensive decisions in the face of extreme weather events.

7.2 Weaknesses
• Data Dependency: The model’s accuracy is highly dependent on the quality and completeness

of the input data, which could be affected by biases or incompleteness.

• Model Complexity: The MGWR model and associated multi-objective optimization algorithms
are complex, requiring specialized knowledge and skills, potentially increasing the difficulty and
cost of implementation.

7.3 Potential Future Applications
• Risk Management in the Insurance Industry: The model can be applied to assess and manage

risks associated with extreme weather events, optimizing insurance product design and pricing
strategies.

• Urban Planning and Disaster Prevention: Planners can use the model to understand regional
risk levels and develop appropriate building standards and disaster prevention measures.

• Policy Making and Resource Allocation: Governments and agencies can use the model’s
predictive outcomes to formulate effective climate adaptation strategies, allocate resources judi-
ciously, and enhance societal resilience to extreme weather events.

8 Conclusion
In conclusion, the comprehensive analytical framework presented in this study offers a robust

approach to addressing the challenges faced by the property insurance industry under extreme weather
conditions. The integration of the Multi-Scale Geographically Weighted Regression (MGWR) model
with risk-based insurance pricing strategies and multi-objective optimization techniques has demon-
strated the potential to provide insurance companies with a more nuanced understanding of spatial
risk patterns and to inform strategic decision-making. The model’s ability to balance humanitarian
considerations with economic efficiency is a significant advancement in the field of insurance risk
assessment.

Despite the model’s strengths, it is crucial to acknowledge its dependencies on accurate and
comprehensive data, as well as the complexity of the underlying algorithms. Future research and
development should focus on refining the model to enhance its predictive accuracy and simplify
its implementation, making it more accessible to a broader range of stakeholders. Additionally, the
model’s application extends beyond the insurance industry, offering valuable insights for urban planners,
policymakers, and communities in preparing for and mitigating the impacts of climate change. By
leveraging this framework, society can take proactive steps towards building a more resilient future in
the face of increasing environmental uncertainties.
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AI Utilization Report
In this document, we have employed AI technology, specifically ChatGPT, to enhance various

aspects of our content. The illustrations featured in this report were generated using this advanced
AI tool, showcasing its capability in creating visually appealing and relevant images. Additionally,
ChatGPT was instrumental in refining and polishing the language used throughout the text, ensuring
clarity and effectiveness in communication. This demonstrates the versatile application of AI in both
visual and textual content creation.



Guardians of Liberty: Protecting America's
Icon in the Face of Extreme Weather

Structural Reinforcement 

and Maintenance：

We believe that the measures below will
effectively mitigate the impact of extreme
weather on the Statue of Liberty, ensuring
that it continues to stand as a symbol of
freedom and democracy for decades to
come. We look forward to collaborating
with you to safeguard this invaluable

cultural heritage！

Extreme Weather, 
Insurance Company!

Dear Community

We recommend installing environmental
monitoring equipment on Liberty Island to
track indicators like wind speed,
temperature, and humidity. In case of
extreme weather warnings, we�ll activate an
emergency response plan, including
measures such as suspending visitor access,
enhancing security patrols, and preparing
evacuation routes.

Public Education

 and Participation: Funding and Resource

 Allocation: 

We plan to initiate public education activities
to raise awareness about climate change and
the preservation of historical heritage.
Through lectures, exhibitions, and
interactive experiences, we aim to inspire
community members to participate actively
and contribute to the protection of the Statue
of Liberty.

According to our model predictions,
approximately $2.5 million will be required
annually for maintenance and emergency
responses to ensure the safety of the Statue
of Liberty. This funding will be allocated to
structural reinforcement, the construction of
an environmental monitoring system, and
training for the emergency response team.

Environmental Monitoring

and Emergency Response: 

Considering the Statue of Liberty�s size (46m tall,
93m with pedestal) and material cost (copper
structure with steel frame support), we
recommend regular structural assessments and
maintenance. Given its structural complexity
(complexity coefficient 0.5-1.0) and geographical
location (location coefficient 0.7-1.0), we suggest
an annual comprehensive structural inspection
with reinforcements as needed.




